Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate

نویسندگان

  • Yuwei Dong
  • Yanqiu Zhang
  • Baojun Tu
چکیده

Ammonia-oxidizing bacteria were immobilized by polyvinyl alcohol (PVA) and sodium alginate. The immobilization conditions and ammonia oxidation ability of the immobilized bacteria were investigated. The following immobilization conditions were observed to be optimal: PVA, 12%; sodium alginate, 1.1%; calcium chloride, 1.0%; inoculum concentration, 1.3 immobilized balls/mL of immobilized medium; pH, 10; and temperature, 30°C. The immobilized ammonia-oxidizing bacteria exhibited strong ammonia oxidation ability even after being recycled four times. The ammonia nitrogen removal rate of the immobilized ammonia-oxidizing bacteria reached 90.30% under the optimal immobilization conditions. When compared with ammonia-oxidizing bacteria immobilized by sodium alginate alone, the bacteria immobilized by PVA and sodium alginate were superior with respect to pH resistance, the number of reuses, material cost, heat resistance, and ammonia oxidation ability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immobilization of Phospholipase A1 Using a Polyvinyl Alcohol-alginate Matrix and Evaluation of the Effects of Immobilization

The paper presents the synthesis and performance of an immobilized phospholipase A1 with practical application for oil degumming. The polyvinyl alcohol (PVA) had a number of properties indicating this polymer as a good enzyme carrier. The combination with alginate made a macro-porous structure, evidenced by SEM analyses. When the process time in boric acid solution was 30 minutes, the results r...

متن کامل

Enhanced xylitol production using immobilized Candida tropicalis with non-detoxified corn cob hemicellulosic hydrolysate.

This study reports an industrially applicable non-sterile xylitol fermentation process to produce xylitol from a low-cost feedstock like corn cob hydrolysate as pentose source without any detoxification. Different immobilization matrices/mediums (alginate, polyvinyl alcohol, agarose gel, polyacrylamide, gelatin, and κ-carrageenan) were studied to immobilize Candida tropicalis NCIM 3123 cells fo...

متن کامل

Sandal reactive dyes decolorization and cytotoxicity reduction using manganese peroxidase immobilized onto polyvinyl alcohol-alginate beads

BACKGROUND Fungal manganese peroxidases (MnPs) have great potential as bio-remediating agents and can be used continuously in the immobilized form like many other enzymes. RESULTS In the present study, purified manganese peroxidase (MnP) enzyme isolated from Ganoderma lucidum IBL-05 was immobilized onto polyvinyl alcohol-alginate beads and investigated its potential for the decolorization and...

متن کامل

The Effect of Adding Alginate Natural Polymer on the Structure of Polyvinyl Alcohol Biocompatible Nanofibers in Electrospinning Process

Background: Nowadays, in order to preserve the environment and sustainable development, the use of natural and renewable resources is a priority for industries. High performance and specific structure of nano-biocompatible materials has attracted researchers. In this research, alginate polymer, which is generally obtained from marine sources such as algae, was added to polyvinyl alcohol nanofi...

متن کامل

Alginate immobilization of Spirulina platensis for wastewater treatment.

Immobilization of cyanobacterium Spirulina platensis in sodium alginate (1.5 %) gave the best quality of bead and 15-16 beads were formed per mL of aqueous solution of alginate. The immobilized cells were used in a batch process for treatment of diluted sewage. After 8 days, 95 % of BOD5, 77 % of COD, 90 % of ammonia, and 94 % of TSS were removed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2017